

面向智能分析的天文时序数据处理关键技术研究

Research on the key technology of astronomical time series data processing for intelligent analysis

报告人: 李琨

2023年4月21日

目录

1

研究背景和意义

Background and Significance

2

研究内容

Research Contents

3

研究成果

Research Results

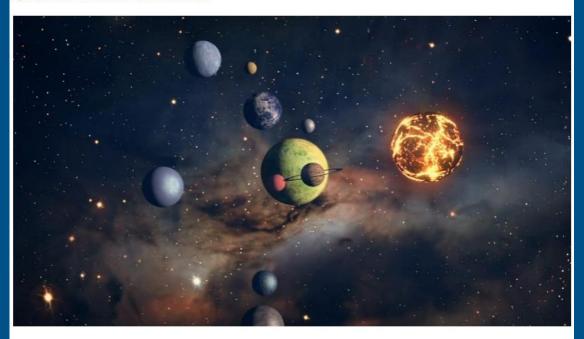
4

总结与展望

Summary and Outlook

研究背景和意义

Background and Significance

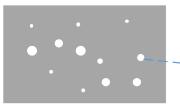

光变曲线智能分析

50 New Planets Confirmed in Machine Learning First – Al Distinguishes Between Real and "Fake" Planets

TOPICS: Algorithm Artificial Intelligence Astronomy Exoplanet Kepler Machine Learning University Of Warwick

By UNIVERSITY OF WARWICK AUGUST 26, 2020

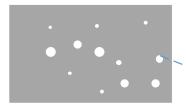
- New machine learning algorithm designed by astronomers and computer scientists from University of Warwick confirms new exoplanets in telescope data
- Sky surveys find thousands of planet candidates, and astronomers have to separate the true planets from fake ones
- Algorithm was trained to distinguish between signs of real planets and false positives
- New technique is faster than previous techniques, can be automated, and improved with further training

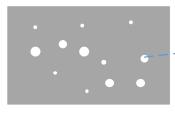

光变曲线是源自天文望远镜观测的时间序列数据,记录了天体属性随时间的变化,是系外行星、超新星等时域天文学研究的核心对象。

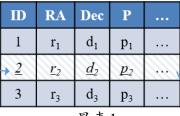
巡天项目的星表数据量

项目名称	天体条目数
2MASS	470,992,971
WISE	563,921,584
AllWISE	747,634,026
SDSS DR9	1,231,051,050
Gaia DR2	1,692,919,135
PanSTARRS DR1	1,919,106,885

光变曲线构造




天文图像1


天文图像2

天文图像3

天文图像4

星表1

	ID	RA	Dec	P	:
-	+ <u>I</u>	\underline{r}_{I}	\underline{d}_{l}	<u>p</u> 1	
	2	\mathbf{r}_2	d_2	\mathbf{p}_2	
	3	r ₃	d_3	p ₃	

星表2

ID	RA	Dec	P	
1	r_1	d_1	p_1	:
2	\mathbf{r}_2	d_2	\mathbf{p}_2	
3	r_3	d_{3}	p_3	

星表3

ID	RA	Dec	P	:
<u> 1</u>	\underline{r}_{I}	\underline{d}_{I}	\underline{p}_{I}	
2	\mathbf{r}_2	d_2	\mathbf{p}_2	
3	r_3	d_3	p_3	

星表4

证认计算

$$\sqrt{((r_1 - r_2) \times \cos((d_1 + d_2) / 2))^2 + (d_1 - d_2)^2} \le 3\sqrt{R_1^2 + R_2^2}$$

R1和R2是误差半径

光变曲线数据集

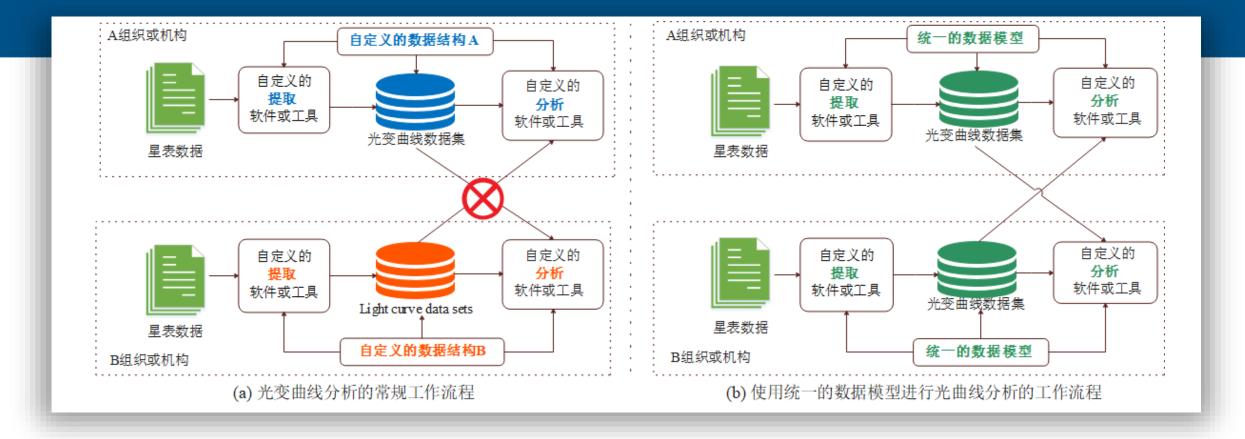
TID	RA	Dec	P_T ₁	P_T ₂	P_T ₃	P_T ₄	•••
1	r_1	d_1	P_1, T_1	P ₂ , T ₂	P_3, T_3	P ₄ , T ₄	
<u>2</u>	<u>r</u> ₂	\underline{d}_2	$\underline{P}_{I}, \underline{T}_{I}$	$\underline{P}_2, \underline{T}_2$	\underline{P}_3 , \underline{T}_3	<u>P</u> ₄ , <u>T</u> ₄	

时间

星等

按需检索的方 式获得指定天 体的光变曲线 数据

对天体时序变 化的研究仅能 限于少量特定 候选目标

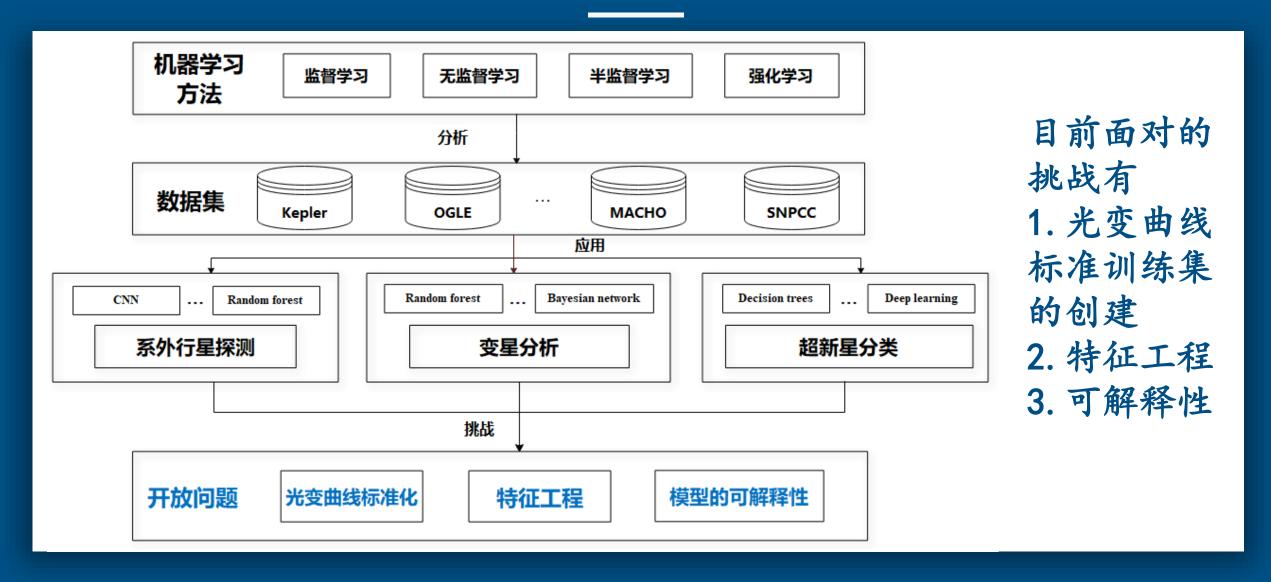

观测数据的潜 在科学价值无 法充分挖掘

研究背景和意义

统一的光变曲线数据模型

• 不同研究组织发布的光变曲线数据集 无法直接应用于别的应用

时域天文学团队研究光变曲线分析开 发的软件和工具都具有深远的影响



研究背景和意义

Background and Significance

基于机器学习的光变曲线分析

一研究内容 Research Contents

科学目标

• 建立光变曲线智能分析的数据基础和技术基础并 开展示范应用

数据基础

- 全样本的光变曲线数据集
- 统一光变曲线数据模型
- 光变曲线分类训练集

技术基础

- 基于证认基准表的星表自证认算法
- 光变曲线自主可控的解耦合存储方案
- 光变曲线特征工程及分类方法

无准大学 Tianjin University

具体研究内容与关键问题

保

证

数

据

处

理

的

效

率

和

准确

力智能

分析

及成

果产

光变曲线全样本构造的研究 全样本光 变曲线数 提升数据访问性能 星表数据预处理和 面 据基础 通过并行提升性能 和系统的可扩展性 向 提高证认计算策略 高效构造 解决主要的性能瓶 颈证认计算的问题 机制技术 的准确性和效率 基础 提供存储数据 的 天 光变曲线 的研究 光变曲线 文 数据模型 提出统一标准的光 提供统一接口,促 时 基础 序 变曲线数据模型 进光变曲线标准化 数 光变曲线 提升用户体验,提 光变曲线数据存储 据 存储技术 系统和存储引擎 高存储和查询效率 处 基础 理关键 提供数据服务 光变曲线 光变曲线分类训练集构造的研究 技 分类训练 提出光变曲线分类 提供可自定义的 集基础 训练集的构造方法 分类训练集 研 光变曲线 基于Shapelets和神 优化分类效果并 特征工程 增强可解释性 经网络的特征工程 技术基础

• 光变曲线构造研究:

关键问题: 1.均衡负载的任务划分问题

2. 星表自证认高效计算问题

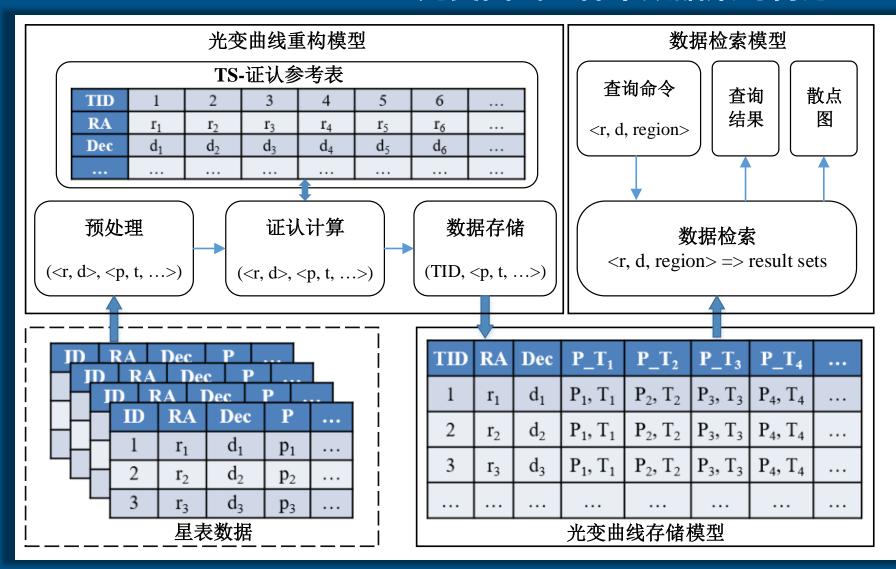
• 光变曲线存储研究:

关键问题: 1. 光变曲线数据集不兼容问题

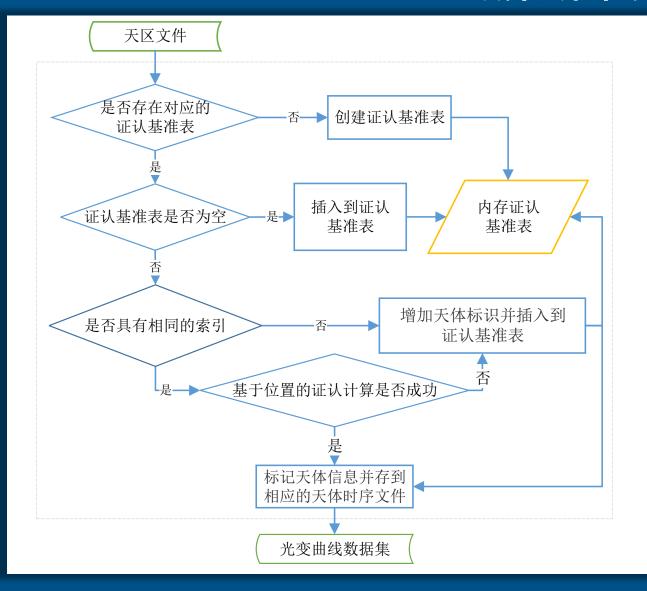
2. 数据采样不均衡的存储问题

• 光变曲线分析研究:

关键问题: 1.光变曲线分类的特征提取问题


2.光变曲线分类的效果方面问题

研究成果 Research Results


光变曲线全样本数据集的构造

- 1. 针对星表数据预处理问题,提出了ETL预处理方式。
- 2. 针对任务分配问题, 转化为分步的背包问 题,提出了基于动态 规划任务划分方法。
- 3. 针对星表证认计算 问题,提出了基于证 认基准表的证认方法。

证认算法和任务划分算法

算法1任务分配算法

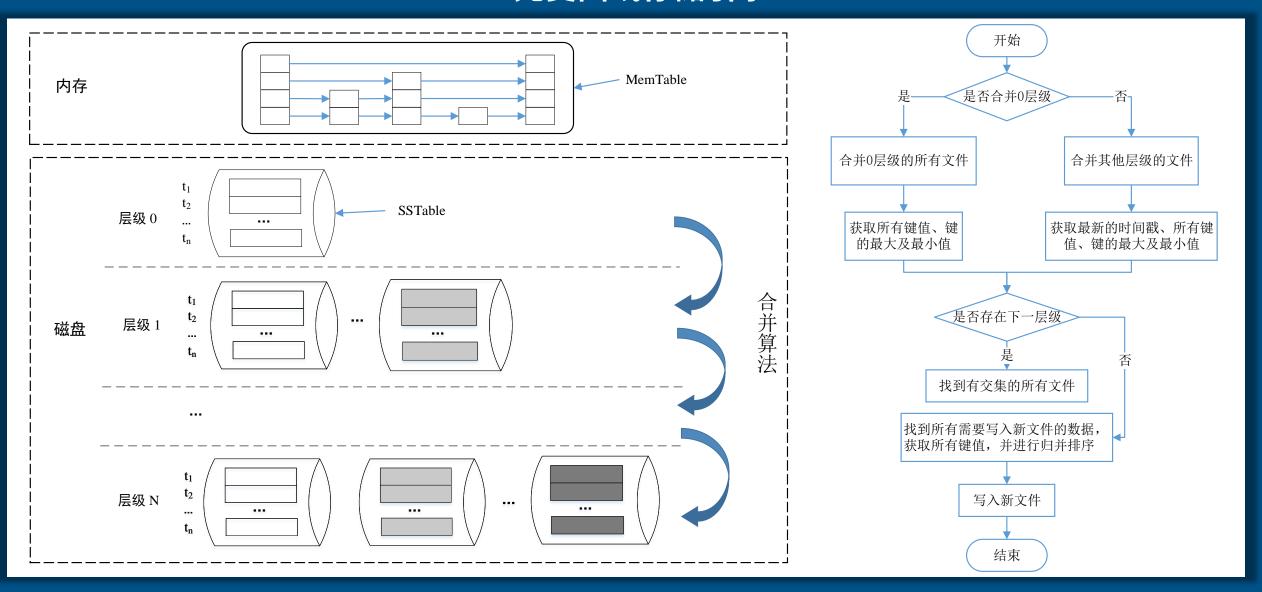
输入: N, M // N 是天区文件编号的集合, M 是给定的进程数

输出: P // 每个进程分配到的天区文件编号的映射

- 1: *P* ← {} 将映射关系初始化为空
- 2: **if** 天区文件数 < *M* then
- 3: P ← 每个进程分配一个天区文件
- 4: return P
- 5: end if
- 6: *f*(*N*) ← 获取每个天区文件的大小
- 7: $D \leftarrow Sort(N, f(N))$ 对天区文件进行排序
- 8: for 每一个 $l \in [1, ..., N]$ do
- 9: *u* ← 计算出平均值
- 10: **for** 每一个 $t \in D$ **do**
- 11: **for** j = t to u **do**
- 12: dp[j]=max{dp[j], dp[j-t]+t}
- 13: 记录每一个天区文件被分配的进程编号
- 14: end for
- 15: end for
- 16: 更新负载均值 u
- 17: 删除已分配的天区文件
- 18: end for
- 19: **return** *P*

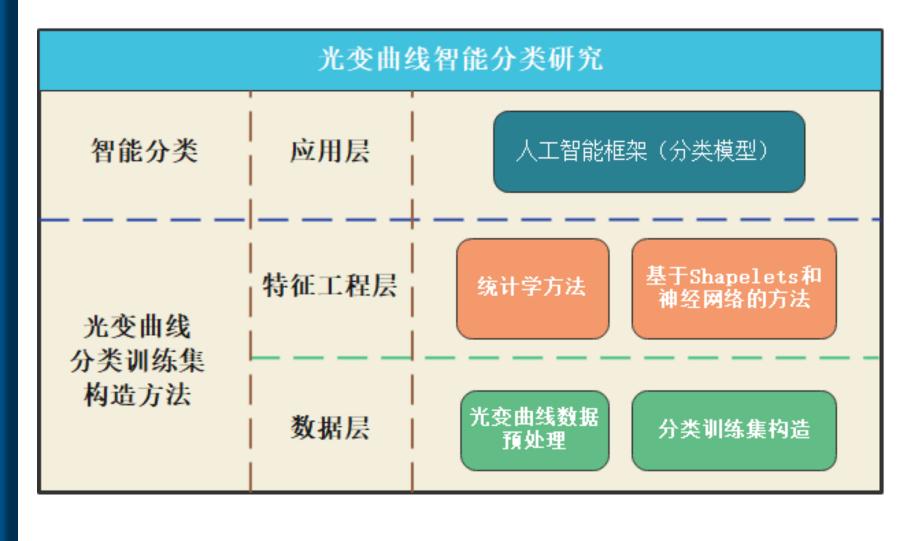
光变曲线模型和存储

- 1. 针对光变曲线数据集不兼容问题,提出了TSCat数据模型。
- 2. 针对光变曲线数据采样不均衡等存储问题,提出了自主可控的解耦合存储方案。并基于TSCat数据模型设计实现了光变曲线存储系统。
- 3. 针对光变曲线时序元组的读写性能问题,提出了基于 LSM树的存储引擎。

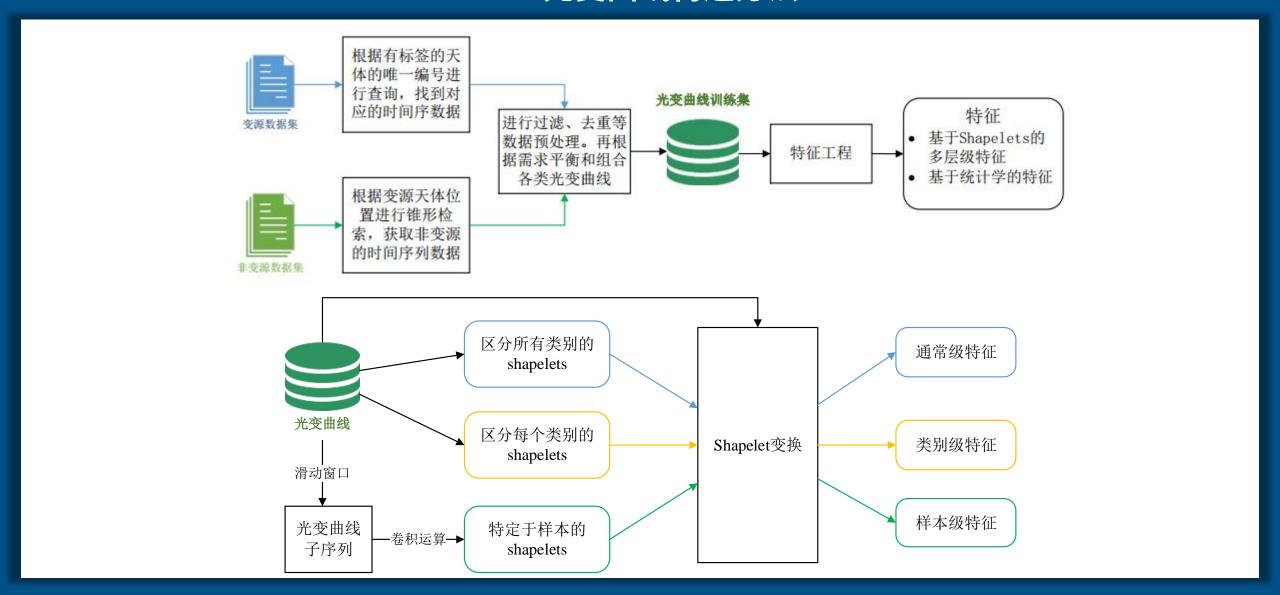

光变曲线模型TSCat

头信	息		{观测时间 ₁ , 星 星等误差 ₁ 或		{观测时间 ₂ , 星等 ₂ 或流量 ₂ , 星等误差 ₂ 或流量误差 ₂ }		{观测时间",星等"或流量", 星等误差"或流量误差"}
			{溯源信息	$\{X_1, Y_1\}$	{溯源信息 ₂ , X ₂ , Y ₂ }	•••	{溯源信息 _n , X _n , Y _n }
天区编号	<u> </u>	赤经	赤纬	天体编号	1.		

需要的数据信息	光变曲线特征
星等或流量	ampl, fpr, mad, mbrp, pa, pdfp, pst, sk, std, Mean
星等或流量,时间	$\begin{aligned} & Freq\{i\}_harmonics_amplitude_f\{j\}, & lt, \\ & ms, SlottedA_length, Eta_e \end{aligned}$
星等或流量,星等误差或流量误差	b1std, StetsonK
星等或流量,时间,星等误差或流量误差	CAR_mean, CAR_sigma, CAR_tau



光变曲线存储引擎


光变曲线分类训练集的构造

- 1. 针对训练集短缺的问题, 提出了可自定义的 光变曲线分类训练集。
- 2. 针对光变曲线特征提取方面问题,提出了基于shapelets和神经网络的特征工程。
- 3. 针对分类效果方面的问题,提出了基于多层次的shapelets特征的分类方法。

光变曲线构造方法

上总结与展望 Summary and Outlook

4 总结与展望 Summary and Outlook

光变曲线数据集的构造

提出并实现了一种光变曲线高效构造机制及工具 AstroCatR,自海量归档的天文星表数据中,构造 出全样本的光变曲线数据集。

光变曲线数据模型与存储

提出了光变曲线数据模型TSCat和自主可控的解耦合存储方案,并设计实现了光变曲线数据存储系统与引擎。

光变曲线分类训练集的构造

提出了光变曲线分类训练集的构造方法和基于 Shapelets的特征工程,并基于开源数据构造出了 一个可自定义的的光变曲线分类训练集。

人样大学 Tianjin University

分布式构造

面向光学时域巡天望远 镜阵列的数据处理,提 出分布式星表光变曲线 数据的构造方案,以期 解决多望远镜协同的天 文光变曲线数据构造问 题。

地理分布式存储

研发实现适于地理分布式光 学望远镜阵的分布式存储系 统,让各望远镜观测所得的 星表数据能够及时自动增量 更新至相应天体各自的光变 曲线,支持时域天文学领域 的重大科学问题研究。

智能分析框架

研发光变曲线智能分析框架,支持多样化的光变曲线智能分析应用和研究,进一步推动人工智能技术方法在光变曲线智能分析中的应用和发展。

敬请批评指正!

Thanks for your criticism and correction!